Search ResultsMath Topics
Math FundamentalsReal Numbers
Explain the meaning of each expression:
\(3<5\)
\(0>100\)
\(-3<5\)
\(-5<-2\)
Give the opposite of each number: \(5\), \(7\), \(1\), \(-5\), \(-8\)
Add \(3+(-5)\) using the number line.
Add \(-3+5\) using the number line.
Add \(-3+(-5)\) using the number line.
Add all combinations of positive and negative \(10\) and \(15\).
Simplify: \(10+(-5)+(-3)+4\)
Simplify: \([-3+(-10)]+[8+(-2)]\)
Subtract: \(-7-2\)
Subtract: \(\;12-(-6)\)
Subtract: \(7-9\)
Combine: \(-3+6-2\)
Subtract \(3\) from \(-5\)
Multiply:
\(2(4)\)
\(-2(-4)\)
\(2(-4)\)
\(-2(4)\)
Multiply: \(-3(2)(-5)\)
Expand and simplify:
\((-6)^2\)
\(-6^2\)
\((-4)^3\)
\(-4^3\)
Simplify: \(-4+5(-6+2)\)
Simplify: \(-3(2-9)+4(-7-2)\)
\(\left(\displaystyle\frac{2}{3}\right)\left(-\displaystyle\frac{3}{5}\right)\)
\(\left(-\displaystyle\frac{7}{8}\right)\left(-\displaystyle\frac{5}{14}\right)\)
\((-5)(3.4)\)
\((-0.4)(-0.8)\)
Divide:
\(12 \div 4\)
\(-12 \div 4\)
\(12 \div (-4)\)
\(-12 \div (-4)\)
\(\frac{20}{5}\)
\(\frac{-20}{5}\)
\(\frac{20}{-5}\)
\(\frac{-20}{-5}\)
Simplify: \(\displaystyle\frac{-15+5(-4)}{12-17}\)
Simplify: \(-4\left(10^2\right)+20\div (-4)\)
MathTV Video Player
Oops. Content Missing
Modal title