MathTV Logo TOPICS
 
CHOOSE A TOPIC
MathTV Logo

Search Results
Math Topics

Intermediate Algebra
Systems of Equations

1
Solving Linear Systems

Problem  1
practice icon

Solve

\[\begin{aligned} x+y &= 4\\ x-y &= -2\end{aligned}\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Betsy cc
Betsy
Preston cc
Preston
Edwin espanol spanish
Edwin
Problem  2
practice icon

Solve
\(x+y=2\)
\(y=2x-1\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Betsy cc
Betsy
Aaron cc
Aaron
Cynthia espanol spanish
Cynthia
Problem  3
practice icon

Solve
\(x-3y=-1\)
\(2x-3y=4\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Betsy cc
Betsy
Aaron cc
Aaron
Edwin espanol spanish
Edwin
Problem  4
practice icon

Solve
\(4x+2y=8\)
\(y=-2x+4\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Betsy cc
Betsy
Aaron cc
Aaron
Edwin espanol spanish
Edwin
Problem  5
practice icon

Solve by substitution.

\[\begin{aligned} 2x+6y&=7\\ x&=-3y+5\end{aligned}\]

Choose instructor to watch:
Winston cc
Winston
Molly S. cc
Molly S.
Octabio
Octabio
Cynthia espanol spanish
Cynthia
Problem  6
practice icon

Solve

\[\begin{aligned} x+y&=4\\ x-y&=2\end{aligned}\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Brooke cc
Brooke
Matt cc
Matt
Anthony espanol spanish
Anthony
Problem  7
practice icon

Solve

\[\begin{aligned} 2x-y&=6\\ x+3y&=3\end{aligned}\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Aaron cc
Aaron
Anthony espanol spanish
Anthony
Problem  8
practice icon

Solve

\[\begin{aligned} \displaystyle\frac{1}{2}x-\displaystyle\frac{1}{3}y&=2\\ \displaystyle\frac{1}{4}x+\displaystyle\frac{2}{3}y&=6\end{aligned}\]

Choose instructor to watch:
Molly S. cc
Molly S.
Edwin espanol spanish
Edwin
Problem  9
practice icon

Solve

\[\begin{aligned} 2x-y&=2\\ 4x-2y&=12\end{aligned}\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Betsy cc
Betsy
Aaron cc
Aaron
Edwin espanol spanish
Edwin
Problem  10
practice icon

Solve

\[\begin{aligned} 4x-3y&=2\\ 8x-6y&=4\end{aligned}\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Betsy cc
Betsy
Aaron cc
Aaron
Edwin espanol spanish
Edwin
Mini Lecture

Mini Lecture
Solve each system.

  1. \(\begin{aligned}[t] x + y &= 3 \\ x-y &= 1 \end{aligned}\)

  2. \(\begin{aligned}[t] 3 x -2 y &= 6 \\ x-y &= 1 \end{aligned}\)

  3. \(\begin{aligned}[t] x + y &= 2 \\ x &= -3 \end{aligned}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Mini Lecture

Mini Lecture
Solve each system.

  1. \(\begin{aligned}[t] x + y &= 11 \\ y &= 1x-1 \end{aligned}\)

  2. \(\begin{aligned}[t] 2 x + y &= 1 \\ x-5y &= 17 \end{aligned}\)

  3. \(\begin{aligned}[t] 7x - 6y &= -1 \\ x &= 2y-1 \end{aligned}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Mini Lecture

Mini Lecture
Solve each system.

  1. \(\begin{aligned}[t] x + y &= 3 \\ x-y &= 1 \end{aligned}\)

  2. \(\begin{aligned}[t] 3 x - y &= 4 \\ 2x+2y &= 24 \end{aligned}\)

  3. \(\begin{aligned}[t] 2x + 9y &= 2 \\ 5x+3y &= -8 \end{aligned}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

2
Systems of Linear Equations in Three Variables

Problem  1
practice icon

Solve
\(\begin{align*} x+y+z &= 6\\ 2x-y+z &= 3\\ x+2y-3z &= -4 \end{align*}\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Edwin espanol spanish
Edwin
Problem  2
practice icon

Solve
\(\begin{align} 2x+y-z&=3\\ 3x+4y+z&=6\\ 2x-3y+z&=1 \end{align}\)

Choose instructor to watch:
Stefanie cc
Stefanie
Aaron cc
Aaron
Julieta cc espanol spanish
Julieta
Problem  3
practice icon

Solve
\(\begin{align} 2x+3y-z&=5\\ 4x+6y-2&=10\\ x-4y+3z&=5 \end{align}\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Edwin espanol spanish
Edwin
Problem  4
practice icon

Solve
\(\begin{align}x-5y+4z&=8\\ 3x+y-2z&=7\\ -9x-3y+6z&=5 \end{align}\)

Choose instructor to watch:
Stefanie cc
Stefanie
Aaron cc
Aaron
Edwin espanol spanish
Edwin
Problem  5
practice icon

Solve
\(\begin{align} x+3y&=5\\ 6y+z&=12\\ x-2z&=-10 \end{align}\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Edwin espanol spanish
Edwin

3
Matrix Solutions to Linear Systems

Problem  1

Give the dimensions of the following matrices.

  1. \(\left[\begin{array}{cc} -2 & 1\\ 5 & 3 \end{array}\right]\)

  2. \(\left[\begin{array}{cc} 1 & 0\\ 4 & -2\\ -3 & 7 \end{array}\right]\)

  3. \(\left[\begin{array}{cc} 5\\ -2\\ 1 \end{array}\right]\)

  4. \(\left[\begin{array}{cc} 4 & -2 \end{array}\right]\)

Choose instructor to watch:
Molly S. cc
Molly S.
Octabio
Octabio
Cynthia espanol spanish
Cynthia
Problem  2

Find the coefficient matrix, constant matrix, and augmented matrix of the system

\[\begin{aligned} x+5y-3z &= 4\\ -x+2y &= -4\end{aligned}\]

Choose instructor to watch:
Molly S. cc
Molly S.
Octabio
Octabio
Cynthia espanol spanish
Cynthia
Problem  3
practice icon

Solve using an augmented matrix.

\[\begin{aligned} x+y-z &= 2\\ 2x+3y-z &= 7\\ 3x-2y+z &= 9\end{aligned}\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Betsy cc
Betsy
Julieta espanol spanish
Julieta
Gordon espanol spanish
Gordon

4
Determinants and Cramer’s Rule

Problem  1
practice icon

Find the value of each:

  1. \(\left|\begin{array}{cc} 1 & 2\\ 3 & 4 \end{array}\right|\)

  2. \(\left|\begin{array}{cc} 3 & -2\\ 5 & 7 \end{array}\right|\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Stefanie cc
Stefanie
Gordon cc
Gordon
Gordon espanol spanish
Gordon
Problem  2
practice icon

Solve for \(x\): \(\begin{vmatrix} x&2\\ x&4 \end{vmatrix}=8\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Stefanie cc
Stefanie
Gordon cc
Gordon
Gordon espanol spanish
Gordon
Problem  3
practice icon

Use Cramer’s rule to solve

\[\begin{aligned} 2x-3y &= 4\\ 4x+5y &=3\end{aligned}\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Stefanie cc
Stefanie
CJ cc
CJ
Julieta cc espanol spanish
Julieta
Problem  4
practice icon

Find the value of \(\begin{vmatrix} 1&3&-2\\ 2&0&1\\ 4&-1&1 \end{vmatrix}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Stefanie cc
Stefanie
CJ cc
CJ
Gordon espanol spanish
Gordon
Problem  5
practice icon

Expand across the first row: \(\begin{vmatrix}1&3&-2\\ 2&0&1\\ 4&-1&1\end{vmatrix}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Stefanie cc
Stefanie
CJ cc
CJ
Gordon espanol spanish
Gordon
Problem  6
practice icon

Expand down column two: \(\begin{vmatrix}2&3&-2\\ 1&4&1\\ 1&5&-1\end{vmatrix}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Stefanie cc
Stefanie
Gordon cc
Gordon
Betsy cc
Betsy
Problem  7
practice icon

Use Cramer’s Rule to solve

\[\begin{aligned} x+y+z &= 6\\ 2x-y+z &= 3\\ x+2y-3z &=-4\end{aligned}\]

Choose instructor to watch:
Molly S. cc
Molly S.
Octabio
Octabio
Julieta cc espanol spanish
Julieta
Problem  8
practice icon

Use Cramer’s Rule to solve

\[\begin{aligned} x+y &= -1\\ 2x-z &= 3\\ y+2z &=-1\end{aligned}\]

Choose instructor to watch:
Stephanie cc
Stephanie
CJ cc
CJ
Julieta cc espanol spanish
Julieta

5
Applications of Systems of Equations

Problem  1
practice icon

One number is \(2\) more than \(3\) times another. Their sum is \(26\). Find the two numbers.

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
CJ cc
CJ
Edwin espanol spanish
Edwin
Problem  2
practice icon

Suppose \(850\) tickets were sold for a game for a total of \(\$1\text{,}100\). If adult tickets cost \(\$1.50\) and children’s tickets cost \(\$1.00\), how many of each ticket were sold?

Choose instructor to watch:
Betsy cc
Betsy
Stefanie cc
Stefanie
Aaron cc
Aaron
Edwin espanol spanish
Edwin
Problem  3
practice icon

A person invests \(\$10\text{,}000\) in two accounts. One account earns \(8\%\) annually and the other earns \(9\%\). If the total interest earned from both accounts in a year is \(\$860\), how much was invested in each account?

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
CJ cc
CJ
Edwin espanol spanish
Edwin
Problem  4
practice icon

How much \(20\%\) alcohol and \(50\%\) alcohol must be mixed to get \(12\) gallons of \(30\%\) alcohol solution?

Choose instructor to watch:
Betsy cc
Betsy
Stefanie cc
Stefanie
Aaron cc
Aaron
Edwin espanol spanish
Edwin
Problem  5
practice icon

It takes \(2\) hours for a boat to travel \(28\) miles downstream. The same boat can travel \(18\) miles upstream in \(3\) hours. What is the speed of the boat in still water, and what is the speed of the current of the river?

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
CJ cc
CJ
Edwin espanol spanish
Edwin
Problem  6
practice icon

A coin collection consists of \(14\) coins with a total value of \(\$1.35\). If the coins are nickels, dimes, and quarters, and the number of nickels is \(3\) less than twice the number of dimes, how many of each coin is there?

Choose instructor to watch:
Betsy cc
Betsy
Stefanie cc
Stefanie
Aaron cc
Aaron
Julieta cc espanol spanish
Julieta
Problem  7

If water at room temperature is \(77^{\circ}F\) or \(25^{\circ}C\). And the water boils at \(212^{\circ}F\) or \(100^{\circ}C\). Assume the relationship between the two scales is linear, find the formula that gives the Celsius temperature \(C\) in terms of Fahrenheit temperature \(F\).

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
CJ cc
CJ
Edwin espanol spanish
Edwin

6
System of Linear Inequalities and Applications

Problem  1
practice icon

Graph
\(\begin{align}y &< \displaystyle\frac{1}{2}x+3\\ y &\geq \displaystyle\frac{1}{2}x-2 \end{align}\)

Choose instructor to watch:
Betsy cc
Betsy
Stefanie cc
Stefanie
CJ cc
CJ
Edwin espanol spanish
Edwin
Problem  2
practice icon

Graph
\(\begin{align}x+y &<4\\ x &\geq 0\\ y &\geq 0 \end{align}\)

Choose instructor to watch:
Betsy cc
Betsy
Stefanie cc
Stefanie
Aaron cc
Aaron
Julieta cc espanol spanish
Julieta
Problem  3
practice icon

Graph
\(\begin{align}x&\leq 4\\ y&\geq -3 \end{align}\)

Choose instructor to watch:
Betsy cc
Betsy
Stefanie cc
Stefanie
CJ cc
CJ
Edwin espanol spanish
Edwin
Problem  4
practice icon

Graph

\[\begin{aligned} x-2y&\leq 4\\ x+y&\leq 4\\ x&\geq -1\end{aligned}\]

Choose instructor to watch:
Betsy cc
Betsy
Stefanie cc
Stefanie
Aaron cc
Aaron
Julieta cc espanol spanish
Julieta
Problem  5
practice icon

A basketball arena charges \(\$20\) for certain seats and \(\$15\) for others. They want to make more than \(\$18,000\) and reserve at least \(500\) \(\$15\) seats. Find the system of inequalities and sketch the graph. If \(620\) tickets are sold for \(\$15\), at least how many are sold for \(\$20\)?

Choose instructor to watch:
Betsy cc
Betsy
Stefanie cc
Stefanie
CJ cc
CJ
Edwin espanol spanish
Edwin
Problem  6
practice icon

Make-A-Sale is a new company designed to assist clients selling household items over the internet. Start-up costs for the company are \(\$40,000\), and they expect variable costs to be \(\$6.00\) for each item sold. They plan to charge \(\$14.00\) per item.

  1. Find the total cost, revenue, and profit for selling \(x\) items.

  2. If they sell \(3,000\) items, find their cost, revenue, and profit.

  3. If they sell \(12,000\) items, find their cost, revenue, and profit.

  4. Find the break-even point (when revenue equals cost), include a graph of the inequalities \(R(x)\leq C(x)\) and \(R(x)\geq C(x)\) to show intervals of profit and loss.

Choose instructor to watch:
Molly S. cc
Molly S.
Octabio
Octabio
Problem  7
practice icon

Find the equilibrium price and quantity of the following supply and demand equations: \[d(p)=5,000-4p\] \[s(p)=1,000+6p\]

Choose instructor to watch:
Molly S. cc
Molly S.
Octabio
Octabio
Cynthia espanol spanish
Cynthia