Search ResultsMath Topics
TrigonometryIdentities and Formulas
Prove \(\sin\theta\cot\theta=\cos\theta\)
Prove \(\tan x+\cos x=\sin x(\sec x+\cot x)\).
Prove \(\displaystyle\frac{\cos^4t-\sin^4t}{\cos^2t}=1-\tan^2t\).
Prove \(1+\cos\theta=\displaystyle\frac{\sin^2\theta}{1-\cos\theta}\).
Prove \(\tan x+\cot x=\sec x\csc x\).
Prove \(\displaystyle\frac{\sin\alpha}{1+\cos\alpha}+\displaystyle\frac{1+\cos\alpha}{\sin\alpha}=2\csc\alpha\).
Prove \(\displaystyle\frac{1+\sin t}{\cos t}=\displaystyle\frac{\cos t}{1-\sin t}\).
Show that \(\cot^2\theta+\cos^2\theta=\cot^2\theta\cos^2\theta\) is not an identity by finding a counterexample.
Mini LectureProve.
\(\cos\theta\tan\theta=\sin\theta\)
\(\cos x(\csc x+\tan x)=\cot x+\sin x\)
\(\displaystyle\frac{\cos^4t-\sin^4t}{\sin^2t}=\cot^2t-1\)
Find the exact value for \(\cos 75^\circ\).
Show that \(\cos(x+2\pi)=\cos x\).
Write \(\cos 3x\cos 2x-\sin 3x\sin 2x\) as a single cosine.
Show that \(\cos(90^\circ -A)=\sin A\).
Find the exact value of \(\sin \left(\displaystyle\frac{\pi}{12}\right)\).
If \(\sin A=\frac{3}{5}\) with \(A\) in QI and \(\cos B=-\frac{5}{13}\) with \(B\) in QIII, find \(\sin(A+B)\), \(\cos(A+B)\), and \(\tan(A+B)\).
If \(\sin A=\frac{3}{5}\) with \(A\) in QI and \(\cos B=-\frac{5}{13}\) with \(B\) in QIII, find \(\tan(A+B)\) by using this formula \[\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}\]
Mini Lecture
Find the exact value of \(\sin 15^\circ\).
Prove: \(\sin(90^\circ +\theta)=\cos\theta\)
Graph one cycle: \(y=2\left(\sin x\cos\frac{\pi}{3}-\cos x\sin\frac{\pi}{3}-\cos x\sin\frac{\pi}{3}\right)\)
If \(\sin A=\displaystyle\frac{3}{5}\) with \(A\) in QII, find \(\sin 2A\).
Prove \(\left(\sin\theta+\cos\theta\right)^2=1+\sin 2\theta\).
If \(\sin A=\displaystyle\frac{1}{\sqrt{5}}\), find \(\cos 2A\).
Prove \(\sin 2x=\displaystyle\frac{2\cot x}{\left(1+\cot^2x\right)}\).
Prove \(\cos 4x=8\cos^4x-8\cos^2x+1\).
Prove \(\tan\theta=\displaystyle\frac{1-\cos2\theta}{\sin2\theta}\).
Graph \(y=3-6\sin^2x\) from \(x=0\) to \(x=2\pi\).
If \(\cos x=\displaystyle\frac{1}{\sqrt{10}}\) with \(x\in\) QIV, find \(\sin 2x\).
Graph \(y=4-8\sin^2x\) from \(0\leq x\leq 2\pi\)
Verify \(\sin 60^\circ=2\sin30^\circ\cos30^\circ\)
If \(\cos A=\frac{3}{5}\) with \(270^\circ<A<360^\circ\), find \(\sin\frac{A}{2}\), \(\cos\frac{A}{2}\), and \(\tan\frac{A}{2}\).
If \(\sin A=-\frac{12}{13}\) with \(180^\circ<A<270^\circ\), find the six trigonometric functions of \(\displaystyle\frac{A}{2}\).
Find \(\tan15^\circ\).
Prove \(\sin^2\displaystyle\frac{x}{2}=\displaystyle\frac{\tan x-\sin x}{2\tan x}\).
Mini LectureLet \(\sin A=\displaystyle\frac{4}{5}\) with \(A\) in QII. Find.
\(\sin\displaystyle\frac{A}{2}\)
\(\cos 2A\)
\(\sec 2A\)
Evaluate \(\sin\left(\arcsin\displaystyle\frac{3}{5}+\arctan 2\right)\) without using a calculator.
Write \(\sin\left(2\tan^{-1}x\right)\) as an equivalent expression involving only \(x\). (Assume \(x\) is positive).
Verify the product formula \((3)\) for \(A=30^\circ\) and \(B=120^\circ\).
Write \(10\cos5x\sin3x\) as a sum or difference.
Verify sum formula \((7)\) for \(\alpha=30^\circ\) and \(\beta=90^\circ\).
Verify the identity \(-\tan x=\displaystyle\frac{\cos 3x-\cos x}{\sin 3x+\sin x}\).
Mini LectureEvaluate.
\(\sin\left(\arcsin\displaystyle\frac{3}{5}-\arctan2\right)\)
\(\tan\left(\sin^{-1}x\right)\)
Rewrite as a product: \(\sin7x+\sin3x\)
MathTV Video Player
Oops. Content Missing
Modal title