Search ResultsMath Topics
Get Ready for Statistics: CorequisitesNegative Numbers, Opposites, Reciprocals, and Square Roots
Label the points on a number line\(-3.5, -1\displaystyle\frac{1}{4}, \displaystyle\frac{1}{2}, \displaystyle\frac{3}{4}, 2.5\).
Write \(\displaystyle\frac{3}{4}\) with denominator \(20\).
Factor \(525\) into the product of primes.
Reduce \(\dfrac{210}{231}\) to lowest terms.
Write each expression without absolute value symbols.
\(\lvert5\rvert\)
\(\lvert-5\rvert\)
\(\left\lvert-\displaystyle\frac{1}{2}\right\rvert\)
Simplify.
\(\lvert8-3\rvert\)
\(\left\lvert3\cdot 2^3+2\cdot 3^2\right\rvert\)
\(\lvert9-2\rvert-\lvert8-6\rvert\)
Find all x for which |x| = 3.
Give the opposite of each number.
\(5\)
\(-3\)
\(\displaystyle\frac{1}{4}\)
\(-2.3\)
Multiply \(\displaystyle\frac{3}{4}\cdot \displaystyle\frac{5}{7}\)
Multiply \(7\left(\displaystyle\frac{1}{3}\right)\)
Give the reciprocal of each number.
\(2\)
\(\displaystyle\frac{1}{3}\)
\(\displaystyle\frac{3}{4}\)
Find the following roots
\(\sqrt{36}\)
\(-\sqrt{36}\)
\(\sqrt{144}\)
Find the following roots.
\(\sqrt[3]{-8}\)
\(\sqrt[3]{-27}\)
\(\sqrt{-4}\)
\(-\sqrt{4}\)
\(\sqrt[4]{-16}\)
\(-\sqrt[4]{16}\)
Simplify \(\sqrt{25a^2}\), assume \(a\geq0\).
Simplify \(\sqrt{16a^2b^2}\), assume \(a\geq 0\) and \(b\geq 0\).
Use a calculator to find decimal approximations of each of the following, round to the nearest thousandth.
\(\sqrt{12}\)
\(2\sqrt{3}\)
\(\sqrt{45}\)
\(3\sqrt{5}\)
Simplify \(\sqrt{\dfrac{8}{3-1}}\)
Simplify \(\dfrac{12-4}{\dfrac{5}{\sqrt{9}}}\)
Evaluate the expression \(\sqrt{npq}\) if \(n=100\), \(p=0.4\), and \(q=1-p\).
MathTV Video Player
Oops. Content Missing
Modal title