Search Results
Math Topics
Intermediate Algebra
Sequences and Series
1
Sequences and Recursion Formulas
2
Series
Mini Lecture
Expand and simplify.
\(\displaystyle\sum_{i=1}^{4}(2t+4)\)
\(\displaystyle\sum_{i=3}^{6}(-2)^i\)
\(\displaystyle\sum_{i=3}^{6}(x+i)^i\)
Write with summation notation.
\(\displaystyle\frac{3}{4}+\displaystyle\frac{4}{5}+\displaystyle\frac{5}{6}+\displaystyle\frac{6}{7}+\displaystyle\frac{7}{8}\)
\(4+8+16+32+64\)
3
Arithmetic Sequences
4
Geometric Sequences
Mini Lecture
Is the sequence geometric?
\(1, 5, 25, 125, \ldots\)
\(\displaystyle\frac{1}{2}, \displaystyle\frac{1}{6}, \displaystyle\frac{1}{18}, \displaystyle\frac{1}{54}, \ldots\)
If \(a_1=4\) and \(r=3\), find \(a_n, a_{20},\) and \(S_{20}\)
Find \(a_{10}\) and \(S_{10}\) for \(\sqrt{2}, 2, 2\sqrt{2}, \ldots\) \(\displaystyle\frac{1}{2}+\displaystyle\frac{1}{4}+\displaystyle\frac{1}{8}+\ldots=\)?
Show that \(0.444\ldots=\displaystyle\frac{1}{9}\)