MathTV Logo TOPICS
 
CHOOSE A TOPIC
MathTV Logo

Search Results
Math Topics

More Calculus
Limits

1
Definitions

Problem  1

Use the \(\epsilon\), \(\delta\) definition of a limit to prove the following statement. \[\lim_{x\rightarrow3}\frac{x}{5}=\frac{3}{5}\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Problem  2

Use the \(\epsilon\), \(\delta\) definition of a limit to prove the following statement. \[\lim_{x\rightarrow2}\frac{x^2+x-6}{x-2}=5\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Problem  3

Use \(\epsilon\), \(\delta\) definition of a limit to prove the following statement. \[\lim_{x\rightarrow 3}x^2=9\]

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

2
Limit Theorems

Problem  1

What are the limit theorems, and how do we use them?

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Problem  2

Find the following limits.

  1. \(\displaystyle\lim_{x\rightarrow2}\left(5-x^2\right)\)

  2. \(\displaystyle\lim_{x\rightarrow3}\displaystyle\frac{x^2-4}{x+2}\)

  3. \(\displaystyle\lim_{x\rightarrow1}\sqrt{x^2+3}\)

  4. \(\displaystyle\lim_{x\rightarrow2}\displaystyle\frac{1}{2}\sin x\)

  5. \(\displaystyle\lim_{x\rightarrow e}4\ln x\)

  6. \(\displaystyle\lim_{x\rightarrow0}3e^x\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Problem  3

Find the following limits.

  1. \(\displaystyle\lim_{x\rightarrow4}\displaystyle\frac{x^2-4}{3x-6}\)

  2. \(\displaystyle\lim_{x\rightarrow0}\displaystyle\frac{x^2-4}{3x-6}\)

  3. \(\displaystyle\lim_{x\rightarrow2}\displaystyle\frac{x^2-4}{3x-6}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Problem  4

Evaluate: \(\displaystyle\lim_{x\rightarrow2}\displaystyle\frac{x^2+x-6}{x-2}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

3
Additional Problems

Problem  1

AP Calculus Exam: Multiple Choice Question

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Problem  2

Find the following limits.

  1. \(\displaystyle\lim_{\theta\rightarrow0}\displaystyle\frac{\sin\theta}{\theta}\)

  2. \(\displaystyle\lim_{\theta\rightarrow0}\displaystyle\frac{\theta}{\sin\theta}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague