MathTV Logo TOPICS
 
CHOOSE A TOPIC
MathTV Logo

Search Results
Math Topics

Trigonometry
Radian Measure

1
Reference Angle

Problem  1

Name the reference angle for each of the following angles.

  1. \(30^\circ\)

  2. \(135^\circ\)

  3. \(240^\circ\)

  4. \(330^\circ\)

  5. \(-210^\circ\)

  6. \(-140^\circ\)

Choose instructor to watch:
Adam cc
Adam
Julieta cc
Julieta
Aaron cc
Aaron
Julieta espanol spanish
Julieta
Problem  2

Find the exact value of \(\sin 240^\circ\).

Choose instructor to watch:
Adam cc
Adam
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia cc espanol spanish
Cynthia
Problem  3

Find the exact value of \(\tan 315^\circ\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Gordon cc espanol spanish
Gordon
Problem  4

Find the exact value of \(\csc 300^\circ\)

Choose instructor to watch:
Adam cc
Adam
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia cc espanol spanish
Cynthia
Problem  5

Find the exact value of \(\cos 495^\circ\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Gordon cc espanol spanish
Gordon
Problem  6

Find \(\theta\) if \(\sin\theta=-0.5592\) and \(\theta\) terminates in QIII with \(0^\circ<\theta<360^\circ\).

Choose instructor to watch:
Adam cc
Adam
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia cc espanol spanish
Cynthia
Problem  7

Find \(\theta\) to the nearest tenth of a degree if \(\tan\theta=-0.8541\) and \(\theta\) terminates in QIV with \(0^\circ<\theta<360^\circ\).

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Gordon cc espanol spanish
Gordon
Problem  8

Find \(\theta\) if \(\sin\theta=-\displaystyle\frac{1}{2}\) and \(\theta\) terminates in QIII with \(0^\circ<\theta<360^\circ\).

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia cc espanol spanish
Cynthia
Problem  9

Find \(\theta\) to the nearest degree if \(\sec\theta=3.8637\) and \(\theta\) terminates in QIV with \(0^\circ<\theta<360^\circ\).

Choose instructor to watch:
Adam cc
Adam
Aaron cc
Aaron
Julieta espanol spanish
Julieta
Problem  10

Find \(\theta\) to the nearest degree if \(\cot\theta=-1.6003\) and \(\theta\) terminates in QII with \(0^\circ<\theta<360^\circ\).

Choose instructor to watch:
Gordon cc
Gordon
Julieta cc
Julieta
Gordon cc espanol spanish
Gordon
Mini Lecture

Mini Lecture

  1. Draw \(120^\circ\) and name the reference angle.

  2. Find the exact value of \(\cos 225^\circ\).

  3. Find \(\theta\) if \(\sin\theta=-0.3090\) and \(\theta\in\) QIII.

  4. Find \(\theta\) if \(\sin\theta=-\displaystyle\frac{\sqrt{3}}{2}\) and \(\theta\in\) QIII.

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

2
Radians and Degrees

Problem  1

A central angle \(\theta\) in a circle of radius \(3\) centimeters cuts off an arc of length \(6\) centimeters. What is the measure of \(\theta\)?

Choose instructor to watch:
Adam cc
Adam
Aaron cc
Aaron
Julieta cc
Julieta
Julieta espanol spanish
Julieta
Problem  2

Convert \(45^\circ\) to radians.

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia cc espanol spanish
Cynthia
Problem  3

Convert \(450^\circ\) to radians.

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Gordon cc espanol spanish
Gordon
Problem  4

Convert \(\displaystyle\frac{\pi}{6}\) radians to degrees.

Choose instructor to watch:
Adam cc
Adam
Betsy cc
Betsy
Preston cc
Preston
Gordon cc espanol spanish
Gordon
Problem  5

Convert \(\displaystyle\frac{4\pi}{3}\) radians to degrees.

Choose instructor to watch:
Adam cc
Adam
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia cc espanol spanish
Cynthia
Problem  6

Find \(\sin{\displaystyle\frac{\pi}{6}}\).

Choose instructor to watch:
Adam cc
Adam
Julieta cc
Julieta
Aaron cc
Aaron
Julieta espanol spanish
Julieta
Problem  7

Find \(4\sin{\displaystyle\frac{7\pi}{6}}\).

Choose instructor to watch:
Adam cc
Adam
Julieta cc
Julieta
Aaron cc
Aaron
Julieta espanol spanish
Julieta
Problem  8

Evaluate \(4\sin(2x+\pi)\) when \(x=\displaystyle\frac{\pi}{6}\).

Choose instructor to watch:
Adam cc
Adam
Aaron cc
Aaron
Julieta espanol spanish
Julieta
Mini Lecture

Mini Lecture

  1. \(\theta\) is a central angle in a circle of radius \(r\). Find \(\theta\) if \(r=3\) and \(s=9\) cm.

  2. Convert \(\displaystyle\frac{2\pi}{3}\) radians to degrees.

  3. Convert \(-150^\circ\) to radians.

  4. Simplify \(\sin\left(x+\displaystyle\frac{\pi}{2}\right)\) if \(x=\displaystyle\frac{\pi}{6}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

3
Definition III: Circular Functions

Problem  1

Use the unit circle in Figure 5 to find the six trigonometric functions of \(\displaystyle\frac{5\pi}{6}\).

Choose instructor to watch:
Adam cc
Adam
CJ cc
CJ
Julieta espanol spanish
Julieta
Problem  2

Use the unit circle to find all values of \(t\) between \(0\) and \(2\pi\) for which \(\cos t=\displaystyle\frac{1}{2}\).

Choose instructor to watch:
Adam cc
Adam
CJ cc
CJ
Julieta espanol spanish
Julieta
Problem  3

Show that cosecant is an odd function.

Choose instructor to watch:
Adam cc
Adam
Julieta espanol spanish
Julieta
Problem  4
Choose instructor to watch:
Adam cc
Adam
Julieta espanol spanish
Julieta
Mini Lecture

Mini Lecture

  1. Find all trig functions for \(\displaystyle\frac{11\pi}{6}\).

  2. Find all \(\theta\) for which \(\cos\theta=-\displaystyle\frac{\sqrt{3}}{2}\).

  3. Find \(\cos\left(-\displaystyle\frac{5\pi}{6}\right)\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Take 5

Enrichment
There are actually three definitions for the trigonometric functions. Some of you may have used the right triangle definition previously. This video shows how all three give equivalent results.

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

4
Length of an Arc and Area of a Sector

Problem  1

Give the length of the arc cut off by a central angle of \(2\) radians in a circle of radius \(4.3\) inches.

Choose instructor to watch:
CJ cc
CJ
Stefanie cc
Stefanie
Problem  2
Choose instructor to watch:
Adam cc
Adam
Julieta espanol spanish
Julieta
Problem  3

The minute hand of a clock is \(1.2\) cm long. To two significant digits, how far does the tip of the minute hand move in \(20\) minutes?

Choose instructor to watch:
Adam cc
Adam
Julieta espanol spanish
Julieta
Problem  4

The diameter of the Ferris wheel in Figure 3 is \(250\) feet, and \(\theta\) is the central angle formed as a rider travels his or her initial position \(P_0\) to position \(P_1\). Find the distance traveled by the rider if \(\theta=45^\circ\) and if \(\theta=105^\circ\).

Choose instructor to watch:
Adam cc
Adam
CJ cc
CJ
Stefanie cc
Stefanie
Julieta espanol spanish
Julieta
Problem  5

A person standing on the Earth notices that a \(747\) Jumbo Jet flying overhead subtends an angle of \(0.45^\circ\). If the length of the jet is \(230\) feet, find its altitude to the nearest thousand feet.

Choose instructor to watch:
Adam cc
Adam
Julieta espanol spanish
Julieta
Problem  6

Find the area of the sector formed by a central angle of \(1.4\) radians in a circle of radius \(2.1\) meters.

Choose instructor to watch:
CJ cc
CJ
Stefanie cc
Stefanie
Julieta espanol spanish
Julieta
Problem  7

If the sector formed by a central angle of \(15^\circ\) has an area of \(\displaystyle\frac{\pi}{3}\) square centimeters, find the radius of the circle.

Choose instructor to watch:
Adam cc
Adam
CJ cc
CJ
Stefanie cc
Stefanie
Julieta espanol spanish
Julieta
Problem  8

A lawn sprinkler located at the corner of a yard is set to rotate through \(90^\circ\) and project water out \(30.0\) feet. To three significant digits, what area of the lawn is watered by the sprinkler?

Choose instructor to watch:
CJ cc
CJ
Stefanie cc
Stefanie
Julieta espanol spanish
Julieta
Mini Lecture

Mini Lecture

  1. Find the arc length of \(s\), of a circle with central angle \(\theta=60^\circ\) and radius \(r=4\) millimeters.

  2. Find the radius \(r\) of a circle with central angle \(\theta=\displaystyle\frac{\pi}{4}\) and arc length \(s=\pi\) centimeters.

  3. The minute hand of a clock is \(2.4\) centimeters long. How far does the tip of the minute hand travel in \(20\) minutes?

  4. Find the area \(A\) of the sector formed by central angle \(\theta=15^\circ\) and \(r=5\) meters.

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

5
Velocities

Problem  1

A point on a circle travels \(5\) centimeters in \(2\) seconds. Find the linear velocity of the point.

Choose instructor to watch:
Stefanie cc
Stefanie
Julieta espanol spanish
Julieta
Problem  2

A point on a circle rotates through \(\displaystyle\frac{3\pi}{4}\) radians in \(3\) seconds. Give the angular velocity of \(P\).

Choose instructor to watch:
Stefanie cc
Stefanie
Adam cc
Adam
Problem  3

A bicycle wheel with radius of \(13.0\) inches turns with an angular velocity of \(3\) radians per second. Find the distance traveled by a point on the bicycle tire in \(1\) minute.

Choose instructor to watch:
Stefanie cc
Stefanie
Julieta espanol spanish
Julieta
Problem  4

Figure 1 shows a fire truck parked on the shoulder of a freeway next to a long block wall. The red light on the top of the truck is \(10\) feet from the wall and rotates through one complete revolution every \(2\) seconds. Find the equation that gives the lengths \(d\) and \(s\) in terms of time \(t\).

Choose instructor to watch:
Adam cc
Adam
Stefanie cc
Stefanie
CJ cc
CJ
Problem  5

A phonograph record is turning at \(45\) revolutions per minute (rpm). If the distance from the center of the record to a point on the edge of the record is \(3\) inches, find the angular velocity and the linear velocity of the point in feet per minute.

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Julieta espanol spanish
Julieta
Problem  6
Choose instructor to watch:
Mr. Perez
Mr. Perez
Adam cc
Adam
Mini Lecture

Mini Lecture

  1. Find the linear velocity \(v\) of a point moving with uniform circular motion, if the point covers a distance \(s=12\) centimeters in time \(t=4\) seconds.

  2. Find the distance \(s\) covered by a point moving with velocity \(v=20\) feet per second for a time \(t=4\) seconds.

  3. Find the distance \(s\) traveled by a point with angular velocity \(\omega=4\) radians per second on a circle of radius \(r=2\) inches, for time \(t=5\) seconds.

  4. find the angular velocity \(\omega\), associated with \(10\) rpm.

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

6
Spotlight on Stefanie

Problem

Spotlight on Stefanie

Get to know more about Stefanie.

Choose instructor to watch:
Stefanie cc
Stefanie
Stefanie cc
Stefanie
Stefanie cc
Stefanie